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Abstract

We calculate the fraction of 8B solar neutrinos that arrive at the Earth as a ν2 mass eigenstate

as a function of the neutrino energy. Weighting this fraction with the 8B neutrino energy spectrum

and the energy dependence of the cross section for the charged current interaction on deuteron with

a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the integrated

weighted fraction of ν2’s to be 91±2% at the 95% CL. This energy weighting procedure corresponds

to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO’s

current best fit values for the solar mass squared difference and the mixing angle, obtained by

combining the data from all solar neutrino experiments and the reactor data from KamLAND.

The uncertainty on the ν2 fraction comes primarily from the uncertainty on the solar δm2 rather

than from the uncertainty on the solar mixing angle or the Standard Solar Model. Similar results

for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos

and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element Ue2

as well as place a lower bound on the electron number density in the solar 8B neutrino production

region.
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I. INTRODUCTION

Recently the KamLAND [1] and Sudbury Neutrino Observatory (SNO) [2] experiments

have given a precise determination of the neutrino solar mass squared difference and mixing

angle responsible for the solar neutrino deficit first observed in the Davis [3] experiment

when compared to the theoretical calculations by Bahcall [4]. Subsequently this deficit has

been observed by many other experiments [5, 6], while the theoretical calculations of the

neutrino flux based on the Standard Solar Model (SSM) has been significantly improved[7].

When all of these results are combined in a two neutrino fit as reported by SNO [2], the

allowed values for the solar mass squared difference, δm2
⊙, and the mixing angle, θ⊙, are

individually (for 1 degree of freedom) restricted to the following range1,

δm2
⊙ = 8.0+0.4

−0.3 × 10−5eV2,

sin2 θ⊙ = 0.310 ± 0.026, (1)

at the 68 % confidence level. Maximal mixing, sin2 θ⊙ = 0.5, has been ruled out at greater

than 5 σ. The solar neutrino data is consistent with νe → νµ and/or ντ conversion. The

precision on δm2
⊙ comes primarily from the KamLAND experiment [1] whereas the precision

on sin2 θ⊙ comes primarily from the SNO experiment [2].

The physics responsible for the reduction in the solar 8B electron neutrino flux is the

Wolfenstein matter effect [9] with the electron neutrinos produced above the Mikeyev-

Smirnov (MS) resonance [10]. The combination of these two effects in the large mixing

angle (LMA) region, given by Eq. (1), implies that the 8B solar neutrinos are produced

and propagate adiabatically to the solar surface, and hence to the earth, as almost a pure

ν2 mass eigenstate.2 Since, approximately one third of the ν2 mass eigenstate is νe, this

explains the solar neutrino deficit first reported by Davis. If the 8B solar neutrinos arriving

at the Earth were 100% ν2, then the day-time Charged Current (CC) to Neutral Current

(NC) ratio, CC/NC, measured by SNO would be exactly sin2 θ⊙, the fraction of νe in ν2 in

the two neutrino analysis.

Of course, the ν2 mass eigenstate purity of the solar 8B neutrinos is not 100%, as we will

1 We use the notation of [8] with the subscript “⊙” reserved for the two neutrino analysis whereas the

subscript “12” is reserved for the three neutrino analysis.
2 Without the matter effect, the fraction of ν2’s would be simply sin2 θ⊙, i.e. about 31%, and energy

independent.
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see later, some fraction arrive as ν1’s and if the electron neutrino has a non-zero component in

ν3 (i.e. non-zero sin2 θ13) then there will be a small fraction arriving as ν3’s. For all practical

solar neutrino experiments, these mass eigenstates can be considered to be incoherent, see

[11]. The mass eigenstate purity of the 8B solar neutrinos is the main subject of this

paper. In the next section we will summarize the important physics of the MSW-LMA solar

neutrino solution outlined above and calculate the mass eigenstate purity of 8B neutrinos as

a function of the neutrino energy in a two neutrino analysis for both the SNO and Super-

Kamiokande (SK) experiments. In section 3 we will discuss what happens in a full three

neutrino analysis. In section 4, as an application of the previous sections, we will discuss

the possibility of extracting information about the solar interior independently from the

standard solar model. Finally, in section 5, we present our summary and conclusions.

II. TWO NEUTRINO ANALYSIS:

A. 8B ν2 Fraction

In the two neutrino analysis, let f1(Eν) and f2(Eν) be the fraction of 8B solar neutrinos

of energy Eν which exit the Sun and thus arrive at the Earth’s surface as either a ν1 or a

ν2 mass eigenstate, respectively. Following the analytical studies of Ref. [12], these fractions

are given by

f1(Eν) = 〈cos2 θN
⊙ − Px cos 2θN

⊙ 〉8B, (2)

f2(Eν) = 〈sin2 θN
⊙ + Px cos 2θN

⊙ 〉8B, (3)

where θN
⊙ is the mixing angle defined at the νe production point, Px is the probability of the

neutrino to jump from one mass eigenstate to the other during the MS-resonance crossing,

and the sum is constrained to be 1, f1 + f2 = 1. The average 〈· · · 〉8B is over the electron

density of the 8B νe production region in the center of the Sun predicted by the Standard

Solar Model [13]. The mixing angle, θN
⊙ , and the mass difference squared, δm2

N , at the

production point are

sin2 θN
⊙ =

1

2

{

1 +
(A − δm2

⊙ cos 2θ⊙)
√

(δm2
⊙ cos 2θ⊙ − A)2 + (δm2

⊙ sin 2θ⊙)2

}

, (4)

δm2
N =

√

(δm2
⊙ cos 2θ⊙ − A)2 + (δm2

⊙ sin 2θ⊙)2 (5)
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FIG. 1: The solid and dashed (blue) lines are the 90, 65, 35 and 10% iso-contours of the fraction

of the solar 8B neutrinos that are ν2’s in the δm2
⊙ and sin2 θ⊙ plane. The current best fit value,

indicated by the open circle with the cross, is close to the 90% contour. The iso-contour for

an electron neutrino survival probability, Pee, equal to 35% is the dot-dashed (red) “triangle”

formed by the 65% ν2 purity contour for small sin2 θ⊙ and a vertical line in the pure ν2 region at

sin2 θ⊙ = 0.35. Except at the top and bottom right hand corners of this triangle the ν2 purity is

either 65% or 100%.

where

A ≡ 2
√

2GF (Yeρ/Mn)Eν = 1.53 × 10−4eV2

(

Yeρ Eν

kg.cm−3MeV

)

, (6)

is the matter potential, Eν is the neutrino energy, GF is the Fermi constant, Ye is the electron

fraction (the number of electron per nucleon), Mn is the nucleon mass and ρ is the matter

density. The combination Yeρ/Mn is just the number density of electrons.

Fig. 1 shows, for a wide range of δm2
⊙ and sin2 θ⊙, the iso-contours of

f2 ≡ 〈f2(Eν)〉E, (7)

where 〈· · · 〉E is the average over the 8B neutrino energy spectrum [14] convoluted with

the energy dependence of the CC interaction νe + d → p + p + e− cross section [15] at
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SNO with the threshold on the recoil electron’s kinetic energy of 5.5 MeV. Here we use

sin2 θ⊙ as the metric for the mixing angle as it is the fraction of νe’s in the vacuum ν2 mass

eigenstate. In this work, we mainly focus on SNO rather than SK since the former is the

unique solar neutrino experiment which can measure the total active 8B neutrino flux as well

as 8B electron neutrino flux, independently from the SSM prediction and other experiments.

However, we give a brief discussion on SK later in this section.

In the LMA region the propagation of the neutrino inside the Sun is highly adiabatic [10,

12, 16], i.e. Px ≈ 0, therefore,

f2(Eν) ≡ 1 − f1(Eν) = 〈sin2 θN
⊙ 〉8B. (8)

Due to the fact that 8B neutrinos are produced in a region where the density is significantly

higher (about a factor of four) than that of the MS-resonance value, the average 〈f2(Eν)〉E
is close to 90% for the current solar best fit values of the mixing parameters from the recent

KamLAND plus SNO analysis [2]. Since sin2 θN
⊙ → 1 when A/δm2

⊙ → ∞ (see Eq. (4)), we

can see that at the high energy end of the 8B neutrinos 〈sin2 θN
⊙ 〉8B must be close to 1.

We can check our result using the analysis of SNO with a simple back of the envelope

calculation. In terms of the fraction of ν1 and ν2 the day-time CC/NC of SNO, which is

equal to the day-time average νe survival probability, 〈Pee〉, is given by

CC

NC

∣

∣

∣

∣

day

= 〈Pee〉 = f1 cos2 θ⊙ + f2 sin2 θ⊙, (9)

where f1 and f2 are understood to be the ν1 and ν2 fractions, respectively, averaged over

the 8B neutrino energy weighted with the CC cross section, as mentioned before. Using the

central values reported by SNO 3,

CC

NC

∣

∣

∣

∣

day

= 0.347 ± 0.038, (10)

which was obtained from Table XXVI of Ref. [2], and the current best fit value of the mixing

angle, we find f2 = (1−f1) ≈ 90%, as expected. Due to the correlations in the uncertainties

3 For the sake of simplicity and transparentness of the discussion, we have avoided the Earth matter effect

which causes the so called regeneration of νe during night, by simply restricting our analysis to the day

time neutrino flux throughout this paper. We note that due to the large error, the observed night-

day asymmetry at SNO is consistent with any value from -8 to 5% [2] whereas the expected night-day

asymmetry, 2(N-D)/(N+D), is about 2.2-3.5% for the current allowed solar mixing parameters [21]. Thus

the difference between the day and the day plus night average CC/NC is less than 2% and much smaller

than SNO’s 10% measurement uncertainty on CC/NC.
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FIG. 2: SNO’s Day-time CC/NC ratio in the δm2
⊙ versus sin2 θ⊙ plane. At small values of δm2

⊙,

the Day-time CC/NC ratio equals sin2 θ⊙. The current allowed region at 68 and 95% CL from the

combined fit of KamLAND and solar neutrino data [2] are also shown by the shaded areas with

the best fit indicated by the star.

between the CC/NC ratio and sin2 θ⊙ we are unable to estimate the uncertainty on f2 here.

Note, that if the fraction of ν2 were 100%, then CC
NC

= sin2 θ⊙.

Alternatively, we can rewrite Eq. (9) as4

sin2 θ⊙ =
1

1 − 2f1

(

CC

NC
− f1

)

. (11)

Thus how much CC/NC differs from sin2 θ⊙ is determined by how much f2 differs from 100%,

i.e. the size of f1. In Fig. 2 we have plotted the contours of the day-time CC/NC ratio in

the sin2 θ⊙ versus δm2
⊙ plane for the LMA region. Clearly, at smaller values of δm2

⊙ the day

time CC/NC tracks sin2 θ⊙ whereas at larger values an appreciable difference appears. This

difference is caused by a decrease (increase) in the fraction that is ν2 (ν1) as δm2
⊙ gets larger.

Hence if we know the ν1 or ν2 fraction we can easily calculate sin2 θ⊙ from Eq. (11) using a

4 The relationship between day-time CC

NC
and θ⊙

(

= arcsin
√

(CC

NC
− f1)/(1 − 2f1)

)

or tan2 θ⊙
(

= (CC

NC
− f1)/(1 − f1 − CC

NC
)
)

is not as transparent as sin2 θ⊙.
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measured value of the day-time CC/NC ratio.

A similar analysis can also be performed using the event rate of the elastic scattering

(ES) at SK and/or at SNO. In fact, ES is related to the ν1 and ν2 fractions, as follows,

ES

NC
= f1(cos2 θ⊙ + r sin2 θ⊙) + f2(sin

2 θ⊙ + r cos2 θ⊙) (12)

where r ≡ 〈σνµ,τ e〉/〈σνee〉 ≈ 0.155 is the ratio of the ES cross sections for νµ,τ and νe [18],

averaged over the observed neutrino spectrum. Note that we are normalizing the ES event

rate to that of SNO NC such that Eq. (12) is valid independent of the SSM prediction of

the 8B neutrino flux.

In general, in the presence of neutrino flavor transitions, the fraction of ν1 and ν2 are not

the same for ES and CC because the energy dependence of the cross sections are different.

However, in Ref. [17], it was suggested that if we set analysis threshold energies for SK and

SNO appropriately as TSNO = 0.995 TSK − 1.71 (MeV), where TSNO and TSK are the kinetic

energy threshold of the resulting electron, the energy response of these detectors become

practically identical [17]. Thus, using such a set of thresholds, even if there is a spectral

distortion in the recoil electron energy spectrum, to a good approximation, SK/SNO ES and

SNO CC are related as follows,

ES

NC
=

CC

NC
+ r

(

1 − CC

NC

)

, (13)

and all the results we obtained for SNO in this paper are equally valid for ES at SK and/or

at SNO provided the energy thresholds are set appropriately5.

In Fig. 3(a) we show the ν2 fraction, f2(Eν), versus Eν . The rapid decrease in the ν2

fraction below Eν ∼ 8 MeV is responsible for the expected spectral distortion at energies

near threshold in both SNO (see Fig. 36 of Ref. [2]) and SK (see Fig. 51 of the last Ref.

in [5]). For a neutrino energy near 10 MeV, the SNO sweet spot, the 90% CL variation in

δm2
⊙ changes f2(Eν) more than the 90% CL variation in sin2 θ⊙. Whereas in Fig. 3(b) we

give the fraction of ν2’s above a given energy both unweighted and weighted by the energy

dependence of the CC interaction and ES cross sections. Note, that above a neutrino energy

of 7.5 MeV there is little difference between the weighted and unweighted integrated ν2

fraction. Furthermore, in Fig. 3(c), we show the fraction of ν2’s above a given kinetic energy

5 In fact this suggest an alternative to looking for a spectral distortion to test MSW, compare ES to (1-r)

CC + rNC for a variety of kinetic energy thresholds.
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FIG. 3: (a) The fraction of ν2, f2(Eν), as a function of the neutrino energy. The solid (black) curve

is obtained using the central values for δm2
⊙ = 8.0× 10−5 eV2 and sin2 θ⊙ = 0.31 whereas the blue

dashed (red dotted) lines are the 90% CL range varying δm2
⊙ (sin2 θ⊙) but holding sin2 θ⊙ (δm2

⊙)

fixed at the central value, Eq. (1). (b) The integrated fraction of 8B neutrinos which are ν2’s above

an energy, Eν , dashed (red) curve. Whereas, the solid black and blue curves are weighted by the

energy dependence of the charge current (CC) cross section [15] and the elastic scattering (ES)

cross section [18], respectively. (c) The integrated fraction of 8B neutrinos as a function of the

threshold kinetic energy of the recoil electrons for CC (SNO) and ES (SK or SNO) reactions.

for the recoil electron for both CC (SNO) and ES (SK or SNO) reactions. We observe that

for the same threshold, f2 for ES is always smaller than that for CC. This is expected since

unweighted f2 is a increasing function of Eν and CC cross section increase more rapidly with

energy than that of ES cross section. Hereafter, unless otherwise stated, we focus on the

SNO CC reaction, as the results for ES reaction are qualitatively similar and the thresholds

can be adjusted to give identical results for all practical purposes.

In Fig. 4 we give the breakdown into ν1 and ν2 for the raw 8B spectrum as well as the

spectrum weighted by the energy dependence of the CC interaction using a threshold of 5.5

MeV for the kinetic energy of the recoil electrons. Here we have used the current best fit

values for δm2
⊙ and sin2 θ⊙.

How does the fraction of ν2 vary if we allow δm2
⊙ and sin2 θ⊙ to deviate from their best

fit values? In Fig. 5(a) we show the contours of the fraction of ν2 in the δm2
⊙ versus sin2 θ⊙

plane where we have weighted the spectrum by the energy dependence of the CC interaction

cross-section, and we have used a threshold on the kinetic energy of the recoil electrons of 5.5

8
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FIG. 4: The normalized 8B energy spectrum broken into the ν1 and ν2 components. The left hand

curves (black and white) are unweighted whereas the right hand curves (blue and red) are weighted

by the energy dependence of the CC cross section [15] with a threshold of 5.5 MeV for the recoil

electron’s kinetic energy.

MeV. This energy dependence mimics the energy dependence of the SNO detector. Because

of the strong correlation between sin2 θ⊙ and the day-time CC/NC ratio we also give the

contours of the fraction of ν2 in the δm2
⊙ versus day-time CC/NC plane in Fig. 5(b). Thus

the 8B energy weighted average fraction of ν2’s observed by SNO is

f2 = 91 ± 2% at the 95% CL. (14)

This is the two neutrino answer to the question posed in the title of this paper. We note,

however, that as we showed in Fig. 3(c) the value of f2 is a function of the threshold energy

and also depends on the experiment. We estimate that for SK with the current 4.5 MeV

threshold for the kinetic energy of the recoil electrons, that

f2 = 88 ± 2% at the 95% CL. (15)

The uncertainty is dominated by the uncertainty in δm2
⊙/A. However, the uncertainty on

δm2
⊙ is approximately 5% from the KamLAND data whereas the uncertainty on the matter

potential, A, in the region of 8B production of the Standard Solar Model is 1-2%, see [19].

Hence, the uncertainty on δm2
⊙ dominates.
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⊙ versus sin2 θ⊙ plane. As in Fig. 2, the current allowed

region is also shown. (b) The ν2 fraction (%) in the δm2
⊙ versus the Day-time CC/NC ratio of

SNO plane. We have excluded a region in the top left hand corner of this plot which corresponds

to sin2 θ⊙ < 0.1. The current allowed range is indicated by the cross.

For the current allowed values for δm2
⊙ and sin2 θ⊙, the ratio

δm2
⊙ sin 2θ⊙

A(8B) − δm2
⊙ cos 2θ⊙

≈ 3

4
, (16)

where A(8B) is obtained using a typical number density of electrons at 8B neutrino produc-

tion (Yeρ ≈ 90 g.cm−3) and the typical energy of the observed 8B neutrinos (≈ 10 MeV).

For the best fit central values of δm2
⊙ and sin2 θ⊙, given by Eq.(1), let us define an effective

matter potential for the 8B neutrinos, A
8B
eff , such that the left hand side of Eq.(4) equals

our best fit value for the fraction that is ν2. Thus,

A
8B
eff ≡ δm2

⊙ sin 2θ⊙

[

cot 2θ⊙ +
2f2 − 1

2
√

f2(1 − f2)

]

(17)

= 1.36 × 10−4 eV2,
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for f2 = 0.910. This A
8B
eff corresponds to a YeρEν = 0.892 kg cm−3 MeV, the effective

mixing angle, θN
⊙ |eff = 73◦ and the effective δm2

N |eff = 13.6 × 10−5 eV2.

We can then use this A
8B
eff to perform a Taylor series expansion about the best fit point

as follows

f2 = 〈sin2 θN
⊙ 〉8B ≈ 9

10
+

24

125
ξ + O(ξ2) with ξ ≡ 3

4
− δm2

⊙ sin 2θ⊙

(A
8B
eff − δm2

⊙ cos 2θ⊙)
. (18)

This simple expression reproduces the values of f2 to high precision throughout the 95%

allowed region of the KamLAND and the solar neutrino experiments given in Fig. 5(a). In

this sense our A
8B
eff is the effective matter potential for the 8B neutrinos. An expansion in

δm2
⊙/A around its typical value of 0.6 could also be used but the coefficients are ever more

complex trigonometric functions of θ⊙, whereas with our ξ expansion the coefficients are

small rational numbers.

B. 7Be and pp neutrinos

For 7Be and pp neutrinos the fractions of ν1 and ν2 are much closer to the vacuum values

of cos2 θ⊙ and sin2 θ⊙ respectively, as they are produced well below (more than a factor

of two) the MS-resonance in the Sun, and an expansion in A/δm2
⊙ is the natural one. In

the third Ref. in [16], the electron neutrino survival probability was obtained by a similar

expansion around the average of the matter potential. Using this expansion, we find that

f2 = 1 − f1 = sin2 θN
⊙ = sin2 θ⊙ +

1

2
sin2 2θ⊙

(

A

δm2
⊙

)

+ O
(

A

δm2
⊙

)2

(19)

with A
7Be
eff = 1.1 × 10−5eV2 and App

eff = 0.31 × 10−5eV2, (20)

where the averaged value of the energy (weighted by the cross section) as well as the electron

densities used are, respectively, 〈Eν〉pp = 0.33 MeV and 〈Yeρ〉pp = 62 g/cm3 for pp, and

〈Eν〉7Be = 0.86 MeV and 〈Yeρ〉7Be = 81 g/cm3 for 7Be. Thus f2(
7Be) = 37 ± 4(7)% and

f2(pp) = 33 ± 4(7)% at 68 (95) % CL where the uncertainty here is dominated by our

knowledge of sin2 θ⊙.

C. Two Neutrino Summary

In Fig. 6 we give the neutrino mass spectrum, the value of fraction of ν2’s (sin2 θN
⊙ ) and

the fractional flux as function of the electron number density times neutrino energy, YeρEν ,

11
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FIG. 6: The Mass spectrum (top panel), the fraction of ν2’s produced, sin2 θN
⊙ , (middle panel) and

the fractional flux (bottom panel) versus the product of the electron fraction, Ye, the matter density,

ρ, and the neutrino energy, Eν , for the best fit values δm2
⊙ = 8.0 × 10−5eV2 and sin2 θ⊙ = 0.310.

The vertical dashed lines give the value of YeρEν which reproduces the average ν2 fractions, 91, 37

and 33% for 8B, 7Be and pp respectively. This value of YeρEν = 0.89 kg cm−3 MeV, for the 8B

neutrinos, gives a production mixing angle equal to 73◦ and a production δm2
N = 14 × 10−5 eV2.

YeρEν = 1 kg cm−3 MeV corresponds, in terms of the matter potential, to 15.3 × 10−5 eV2, see

Eq. (6).

which is proportional to the matter potential, for the 8B, 7Be and pp neutrinos using the

best fit values of δm2
⊙ and sin2 θ⊙ in Eq. (1). The 8B energy spectrum has been weighted

by the energy dependence of the CC interaction of SNO with a 5.5 MeV threshold on the

kinetic energy of the recoil electrons whereas the pp energy spectrum has been weighted

by the energy dependence of the charged current interaction on Gallium with a 0.24 MeV

12



threshold. The vertical dashed lines gives the value of YeρEν which reproduces the average

ν2 fraction using the simple expression in Eq. (4) and are useful for the approximations given

in Eqs. (18) and (19).

The energy weighted ν2 fractions for 8B, 7Be and pp neutrinos using a two neutrino

analysis, at the 95% CL, are

f2(
8B) = 91 ± 2%, (21)

f2(
7Be) = 37 ± 4%, (22)

f2(pp) = 33 ± 4%, (23)

where the uncertainties for 7Be and pp are dominated by the uncertainty on sin2 θ⊙ whereas

for 8B the uncertainty is dominated by the uncertainty on δm2
⊙. The ν1 fractions, f1, are

simply 1 − f2.

III. THREE NEUTRINO ANALYSIS

For the three neutrino analysis we first must discuss the size of the component of ν3

which is νe, i.e. the size of sin2 θ13. This mixing angle determines the size of the effects on νe

associated with the atmospheric mass squared difference. The best constraint on θ13 comes

from the CHOOZ reactor experiment [20] which gives a limit on sin2 θ13, as

0 ≤ sin2 θ13 < 0.04, (24)

at the 90 % CL for δm2
31 = 2.5 × 10−3eV2. This constraint depends on the precise value of

δm2
31 with a stronger (weaker) constraint at higher (lower) allowed values of δm2

31.

So far the inclusion of genuine three flavor effects has not been important because these

effects are controlled by the two small parameters

δm2
21

δm2
32

≈ 0.03 and/or sin2 θ13 ≤ 0.04. (25)

However as the accuracy of the neutrino data improves it will become inevitable to take into

account genuine three flavor effects. See [21, 22], for recent studies on the impact of θ13 on

solar neutrinos.

Suppose that Double CHOOZ [23], T2K [24] or NOνA [25] or some other experiment

measures a non-zero value for sin2 θ13. What effect does this have on the previous analysis?

13



How does this change our knowledge of the solar parameters and the relationship between

solar mixing angle and the fraction of ν2?

Our knowledge of the solar δm2 comes primarily from the KamLAND experiment where

the effects of the atmospheric δm2 are averaged over many oscillations, thus to high accuracy

δm2
21 = δm2

⊙, (26)

i.e. the solar δm2 remains unaffected. Remember, we are using the notation δm2
21 and

sin2 θ12 for the three neutrino analysis to distinguish it from δm2
⊙ and sin2 θ⊙ used in the

two neutrino analysis.

A. 8B 3 Neutrino Analysis

For the mixing angle sin2 θ12 the situations is more complicated in the three neutrino

analysis. The 8B electron neutrino survival probability measured by SNO’s day-time CC/NC

ratio can be written as

CC

NC
= F1 cos2 θ13 cos2 θ12 + F2 cos2 θ13 sin2 θ12 + F3 sin2 θ13, (27)

where F1, F2 and F3 are the fraction of ν1, ν2 and ν3 respectively, satisfying F1+F2+F3 = 1.

The ν3 fraction is given by

F3 =

(

1 ± 2A

|δm2
31|

)

sin2 θ13 ≈ sin2 θ13, (28)

where +(-) sign refers to the normal, δm2
31 > 0 (inverted, δm2

31 < 0) mass hierarchy. The

small correction factor 2A
|δm2

31
|
∼ 10% comes from matter effects associated with atmospheric

δm2 in the center of the Sun. We will ignore this correction since it is small and currently

the sign is unknown. Hence, F1 + F2 = 1 −F3 = cos2 θ13.

With this approximation the ν1 and ν2 fractions can be written as

F1 = cos2 θ13 〈cos2 θN
12〉8B and F2 = cos2 θ13 〈sin2 θN

12〉8B. (29)

where the average 〈· · · 〉8B is over the solar production region and the energy of the observed

neutrinos. sin2 θN
12 is given by Eq. (4) with the replacements sin2 θ⊙ → sin2 θ12 and A →

A cos2 θ13 [26].

In going from the two neutrino analysis to the three neutrino analysis the quantity that

must remain unchanged is the value of the electron neutrino survival probability, i.e. the

14



CC/NC ratio. This implies that we must adjust the value of sin2 θ12 and hence the fractions

of ν1 and ν2 so that the CC/NC ratio remains constant. We have performed this procedure

numerically and report the result as a Taylor series expansion in the fraction of ν1’s about

sin2 θ13 = 0. If we write

F1(sin
2 θ13) = F1(0) + α sin2 θ13 + O(sin4 θ13), (30)

then F1(0) ≡ f1, and α ≡ dF1

d sin2 θ13

∣

∣

∣

∣

sin2 θ13=0

. (31)

In Fig.7(a) we have plotted the contours of α ≡ dF1

d sin2 θ13

∣

∣

∣

0
in the δm2

⊙ versus sin2 θ⊙ plane.

Near the best values this total derivative is close to zero, i.e.

dF1

d sin2 θ13

∣

∣

∣

∣

sin2 θ13=0

= 0.00+0.02
−0.04 (32)

at the 68% CL. As sin2 θ13 grows above zero, the size of F1 is influenced by a number of

effects; the first is the factor of cos2 θ13 in Eq. (29) which reduces F1, the second is the

matter potential A which is reduced to A cos2 θ13 raising the fraction F1 and third is the

value of sin2 θ12 which changes to hold the CC/NC ratio fixed. By coincidence the sum

of these effects approximately cancel at the current best fit values and the fraction of ν1

remains approximately unchanged as sin2 θ13 gets larger. This implies that the fraction of

ν2 is reduced by ∼ sin2 θ13 since the sum of F1 + F2 is simply cos2 θ13, thus

F1 ≈ f1 = 0.09 ∓ 0.02, (33)

F2 = f2 − sin2 θ13 ≈ 0.91 ± 0.02 − sin2 θ13, (34)

F3 = sin2 θ13. (35)

Remember fi and Fi are the fractions of the i-th mass eigenstate in the two and three

neutrino analysis, respectively. The uncertainty comes primarily from the uncertainty in

δm2
⊙ measured by KamLAND.

As a use of these fractions one can for example evaluate the MNS matrix element, |Ue2|2 =

cos2 θ13 sin2 θ12, by rewriting Eq. (27) as

|Ue2|2 = cos2 θ13 sin2 θ12 =
(CC

NC
− cos2 θ13F1)

(cos2 θ13 − 2F1)
, (36)

where terms of O(sin4 θ13) have been dropped. Performing a Taylor series expansion about
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FIG. 7: Iso-contours of the derivatives of F1 (a) and |Ue2|2 (b) with respect sin2 θ13 evaluated at

sin2 θ13 = 0 in the δm2
⊙ versus sin2 θ⊙ plane. The contours are labeled as in per cent. The 68 and

95 % CL allowed regions are also indicated.

sin2 θ13 = 0, we find

|Ue2|2 = sin2 θ
8B
⊙ + β sin2 θ13 + O(sin4 θ13), (37)

with β ≡ d|Ue2|2
d sin2 θ13

∣

∣

∣

∣

0

=
(f1 − α) + (1 + 2α) sin2 θ⊙

(1 − 2f1)
. (38)

For the current allowed region of the solar parameters, this implies that

|Ue2|2 ≈ sin2 θ
8B
⊙ + (0.53+0.06

−0.04) sin2 θ13, (39)

at the 68% CL, i.e. the three neutrino |Ue2|2 is approximately equal to the sin2 θ
8B
⊙ using a two

neutrino analysis of only the 8B electron neutrino survival probability using the KamLAND’s

δm2
⊙ constraint plus 53% of |Ue3|2 determined, say, by a CHOOZ-like reactor experiment,

see Fig. 7(b).

If a similar analysis is performed for the three neutrino sine squared solar mixing angle

sin2 θ12, the total derivative with respect to sin2 θ13 is simply (β + sin2 θ⊙). For tan2 θ12 the

total derivative is (β +sin2 θ⊙)/ cos4 θ⊙. Alternatively we can turn this discussion inside out

and write the 8B effective two component sin2 θ⊙ in terms of three component quantities as

sin2 θ
8B
⊙ = sin2 θ12 − (β + sin2 θ12) sin2 θ13. (40)
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For KamLAND, the equivalent relationship is

sin2 θ
8Kam
⊙ = sin2 θ12 −

(

sin2 2θ12

2 cos 2θ12

)

sin2 θ13. (41)

For the current best fit values (β + sin2 θ12) ≈ 0.90 is close to sin2 2θ12/2 cos 2θ12 ≈ 1.1, i.e.

in a two component analysis the difference between the solar 8B and KamLAND sin2 θ⊙’s is

approximately 0.2 sin2 θ13.

B. 7Be and pp 3 Neutrino Analysis

Performing a similar 3 neutrino analysis for the pp (or 7Be) neutrinos we find that the

fraction of neutrino mass eigenstates is

F1 ≈ cos2 θ⊙ − 1

2
sin2 2θ⊙

(

A

δm2
⊙

)

+
sin2 θ⊙
cos 2θ⊙

sin2 θ13 = f1 + 0.82 sin2 θ13, (42)

F2 ≈ sin2 θ⊙ +
1

2
sin2 2θ⊙

(

A

δm2
⊙

)

− cos2 θ⊙
cos 2θ⊙

sin2 θ13 = f2 − 1.8 sin2 θ13, (43)

F3 ≈ sin2 θ13, (44)

where the sin2 θ⊙ here is determined from the pp (or 7Be) neutrinos. Terms of order

O
(

A/δm2
⊙

)2
, O(sin4 θ13) and O

(

sin2 θ13A/δm2
⊙

)

have been dropped here. The two neu-

trino fractions f1 and f2 are given in Eq. (19).

Again we can use these fractions to determine the |Ue2|2 element of the MNS matrix

|Ue2|2 = sin2 θ⊙ −
(

cos2 θ⊙
cos 2θ⊙

)

sin2 θ13 ≈ sin2 θ⊙ − 1.8 sin2 θ13. (45)

Comparing this equation with Eq. (39) appears to be in contradiction but this is not so

since if sin2 θ13 6= 0 then the two component analysis of the 8B and pp (or 7Be) neutrinos

will lead to different values of sin2 θ⊙, in fact

sin2 θpp
⊙ − sin2 θ

8B
⊙ ≈ 2.3 sin2 θ13. (46)

This difference has been extensively exploited in Ref. [22] to determine sin2 θ13 using only

solar neutrino experiments. Their sin2 θ12 versus sin2 θ13 figures, e.g. Fig. 6, demonstrates

this point in a clear and useful fashion. Also, the numerical values of our derivatives of |Ue2|2

are consistent with the inverse of the slopes of their Fig. 6.

Eqs. (39) and (45) also imply that the uncertainty in the determination of |Ue2|2 from

the current unknown value of sin2 θ13 is smaller for the analysis of 8B neutrinos than pp or

7Be neutrinos. Of course the current uncertainty on the two neutrino sin2 θ⊙ dominates.
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IV. PROBING THE SOLAR INTERIOR BY 8B NEUTRINOS

In this section, as an application of our analysis, we will invert the discussions found in

Ref. [27] where the validity of the MSW physics has been tested assuming the standard solar

model (SSM) prediction of the electron number density as well as 8B neutrino production

region. Here, we will discuss what can be said about these quantities, assuming the validity of

the MSW effect in the LMA region. While there is no strong reason to doubt the correctness

of the SSM, which is in good agreement also with the helioseismological data [28], it is

nevertheless interesting if we can test it independently.

Since the propagation of 8B neutrinos, in the Sun, is highly adiabatic in the LMA region,

the fraction of ν2, and consequently, the SNO CC/NC ratio is determined only by the

effective value of the matter potential, A
8B
eff , defined in Section II(A). This implies that if

we can measure sin2 θ⊙ using an experiment independent of the 8B solar neutrinos, then

from the measured value of SNO’s CC/NC ratio we can determine the value of A
8B
eff . Note,

that we can not extract information on the electron number density distribution or the 8B

neutrino production distribution, separately, but only on A
8B
eff which is a single characteristic

of the convolution of these two distributions.

For the two flavor neutrino analysis, if we rewrite the definition of the effective matter

potential A
8B
eff given by Eq.(17) using the relationship between f2 and SNO’s CC/NC ratio,

Eq.(9), we obtain

A
8B
eff = δm2

⊙ sin 2θ⊙



cot 2θ⊙ +
1 − 2CC

NC

2
√

(cos2 θ⊙ − CC
NC

)(CC
NC

− sin2 θ⊙)



 . (47)

This expression allows us to obtain a value of A
8B
eff from (sin2 θ⊙, δm2

⊙) measured independent

of 8B neutrinos and SNO’s 8B neutrino CC/NC ratio. We can convert this into an effective

value of the electron number density, Yeρ |8Beff , in the solar 8B production region, as follows

Yeρ |8Beff ≡ Mn

2
√

2GF

A
8B
eff

〈Eν〉8B

, (48)

where 〈Eν〉8B = 10.5 MeV is the CC cross section weighted average energy of neutrinos

observed by SNO. For a given solar model, the value of Yeρ |8B
eff can be calculated for any

value of sin2 θ⊙ and δm2
⊙. The SSM prediction is that Yeρ |8Beff = 85 g cm−3 at the current

best fit point6. As a comparison the mean value of Yeρ over the 8B production region is 90

6 Because of the way we have defined A
8
B

eff , our Yeρ |8Beff has a weak dependence on sin2 θ⊙ and δm2
⊙ but
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FIG. 8: The iso-contours of Yeρ |8B
eff in the sin2 θ⊙ − CC/NC|day plane. The line labeled SSM is

the Standard Solar Model prediction for Yeρ |8B
eff (≈ 85 g/cm3). The range of observed values of

CC/NC are indicated by the shaded horizontal bands. The KamLAND experiment places a lower

bound on sin2 θ⊙ independent of solar neutrinos at 0.17, see [1]. The vertical band indicate the

uncertainty which could be expected by future reactor experiments [29].

g cm−3. The reason that Yeρ |8B
eff is below the mean value is because values of Yeρ below the

mean pull down the ν2 fraction more than values above the mean raise the ν2 fraction.

We show in Fig. 8, the iso-contours of Yeρ |8B
eff in the sin2 θ⊙ − CC/NC|day plane, for the

current best fitted value of δm2
⊙. The observed range of SNO’s CC/NC are shown by the

horizontal lines7. From this plot, we can derive the lower bound on Yeρ |8Beff which is 40

g/cm3 for any value of θ⊙ at 95 % CL. Future reactor neutrino oscillation experiments [29]

can perform a 2-3% measurement of sin2 θ⊙. The 68% range of sin2 θ⊙ is indicated by vertical

lines in this figure. However, such precision on sin2 θ⊙ will not reduce the allowed values for

Yeρ |8B
eff unless the error on the measured value of CC/NC is reduced.

A three neutrino analysis is needed if Ue3 6= 0 and this can be performed using Eq. (47)

this variation is less than 2% over the 95% CL allowed region.
7 Another horizontal band could be included by combining the Super-Kamiokande Electron Scattering

measurement with the SNO Neutral Current measurement. However, since the uncertainty on the NC

measurement dominates this would produce a similar sized band.
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with the following replacements,

θ⊙ → θ12, δm2
⊙ → δm2

21/ cos2 θ13 and
CC

NC
→ CC

NC

1

cos4 θ13

. (49)

A weak upper bound could be derived using a precision measurement of the 7Be and/or pp

electron neutrino survival probability in a similar fashion. As Aeff gets larger, the fraction of

ν2 gets larger, see Eq.(19), and hence the electron neutrino survival probability gets smaller

for fixed values of the mixing parameters. The upper bound arises when this survival

probability is below the measured survival probability at some confidence level, assuming

that the mixing parameters have been determined independent of these solar neutrinos.

V. SUMMARY AND CONCLUSIONS

We have performed an extensive analysis of the mass eigenstate fractions of 8B solar

neutrinos using only two mass eigenstates (sin2 θ13 = 0) and with three mass eigenstates

(sin2 θ13 6= 0). In the two neutrino analysis the ν2-fraction is 91 ± 2%. The remaining 9 ∓
2% is, of course, in the ν1 mass eigenstate. With these fractions in hand, which are primarily

determined by the solar δm2 measured by the KamLAND experiment, the sine squared of

the solar mixing angle is simply related to CC/NC ratio measured by the SNO experiment.

For completeness the mass eigenstate fractions for 7Be and pp are also given.

Allowing for small but non-zero sin2 θ13, in a full three neutrino analysis, we found very

little change in the fraction of ν1’s. This implies, since the ν3 fraction is sin2 θ13, that the ν2

fraction is reduced by sin2 θ13. That is, the ν2-fraction is

91 ± 2 − 100 sin2 θ13 % at the 95% CL. (50)

Since the CHOOZ experiment constrains the value of sin2 θ13 < 0.04 at the 90% CL this

places a lower bound on the ν2 fraction of 8B solar neutrinos in the mid-eighty percent range

making the 8B solar neutrinos the purest mass eigenstate neutrino beam known so far, and

it is a ν2 beam!

As an example of the use of these mass eigenstate fractions, we have shown that for the

8B neutrinos observed by the SNO experiment, the Ue2-element of the MNS matrix is given

by

|Ue2|2 ≈ sin2 θ
8B
⊙ + (0.53+0.06

−0.04) sin2 θ13. (51)
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Where sin2 θ
8B
⊙ is the sine squared of the solar mixing angle determined by using a two

neutrino analysis of the 8B neutrinos plus KamLAND. An analysis for this sin2 θ
8B
⊙ obtained

from the SK, SNO and KamLAND data [30] gives sin2 θ
8B
⊙ = 0.30+0.11

−0.08 at the 95% CL. With

the data currently available this is our best estimate of |Ue2|2 and is the most accurately

known MNS matrix element.

Finally, we have also demonstrated the possibility of probing the solar interior by 8B

neutrinos. We have derived a lower bound on the average electron number density over the

region where the solar 8B neutrinos are produced which is 50% of the Standard Solar model

value.
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(FAPESP) and Conselho Nacional de Ciência e Tecnologia (CNPq). Fermilab is operated

under DOE contract DE-AC02-76CH03000. Two of us (H.N. and R.Z.F.) are grateful for the

hospitality of the Theoretical Physics Group of the Fermi National Accelerator Laboratory

during numerous visits. R.Z.F. is also grateful to the Abdus Salam International Center

for Theoretical Physics where the final part of this work was performed. We thank Marc

Pinsonneault, Hisakazu Minakata and Alexei Smirnov for discussions.

[1] T. Araki et al. [KamLAND Collaboration], Phys. Rev. Lett. 94, 081801 (2005)

[arXiv:hep-ex/0406035].

[2] B. Aharmim et al. [SNO Collaboration], arXiv:nucl-ex/0502021.

[3] R. Davis Jr, Phys. Rev. Lett. 12, 303 (1964).

[4] J. N. Bahcall, Phys. Rev. Lett. 12, 300 (1964).

[5] K. S. Hirata et al. [KAMIOKANDE-II Collaboration], Phys. Rev. Lett. 65, 1297 (1990); M.

B. Smy et al. [Super-Kamiokande Collaboration], Phys. Rev. D 69, 011104 (2004); J. Hosaka

et al. [Super-Kamkiokande Collaboration], arXiv:hep-ex/0508053.

[6] B. T. Cleveland et al., Astrophys. J. 496, 505 (1998); J. N. Abdurashitov et al. [SAGE

Collaboration], Phys. Rev. C 60, 055801 (1999) [arXiv:astro-ph/9907113]; W. Hampel et al.

21

http://arXiv.org/abs/hep-ex/0406035
http://arXiv.org/abs/nucl-ex/0502021
http://arXiv.org/abs/hep-ex/0508053
http://arXiv.org/abs/astro-ph/9907113


[GALLEX Collaboration], Phys. Lett. B 447, 127 (1999).

[7] J. N. Bahcall and R. K. Ulrich, Rev. Mod. Phys. 60, 297 (1988);

[8] O. Mena and S. J. Parke, Phys. Rev. D 69, 117301 (2004) [arXiv:hep-ph/0312131].

[9] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978) and Neutrino 1978, pg C3-C6 edited by

E. C. Fowler.

[10] S. P. Mikheyev and A. Yu. Smirnov, Yad. Fiz. 42, 1441 (1985) [ Sov. J. Nucl. Phys. 42, 913

(1985)]; Nuovo Cim. C 9, 17 (1986).

[11] A. S. Dighe, Q. Y. Liu and A. Y. Smirnov, arXiv:hep-ph/9903329.

[12] S. J. Parke, Phys. Rev. Lett. 57, 1275 (1986); S. J. Parke and T. P. Walker, Phys. Rev. Lett.

57, 2322 (1986).

[13] J. N. Bahcall, A. M. Serenelli and S. Basu, Astrophys. J. 621, L85 (2005)

[arXiv:astro-ph/0412440]; see also http://www.sns.ias.edu/˜jnb/

[14] C. E. Ortiz, A. Garcia, R. A. Waltz, M. Bhattacharya and A. K. Komives, Phys. Rev. Lett.

85, 2909 (2000) [arXiv:nucl-ex/0003006].

[15] S. Nakamura, T. Sato, V. Gudkov and K. Kubodera, Phys. Rev. C 63, 034617 (2001)

[arXiv:nucl-th/0009012]; S. Nakamura, T. Sato, S. Ando, T. S. Park, F. Myhrer, V. Gud-

kov and K. Kubodera, Nucl. Phys. A 707, 561 (2002) [arXiv:nucl-th/0201062]; See also

http://nuc003.psc.sc.edu∼kubodera/NU-D-NSGK/

[16] W. C. Haxton, Phys. Rev. Lett. 57, 1271 (1986). S. T. Petcov, Phys. Lett. B 200, 373

(1988). P. C. de Holanda, W. Liao and A. Y. Smirnov, Nucl. Phys. B 702, 307 (2004)

[arXiv:hep-ph/0404042].

[17] F. L. Villante, G. Fiorentini and E. Lisi, Phys. Rev. D bf 59, 013006 (1999)

[arXiv:hep-ph/9807360]; See also G. L. Fogli, E. Lisi, A. Palazzo and F. L. Villante, Phys.

Rev. D bf 63, 113016 (2001) [arXiv:hep-ph/0102288].

[18] J. N. Bahcall, M. Kamionkowski and A. Sirlin, Phys. Rev. D 51, 6146 (1995)

[arXiv:astro-ph/9502003].

[19] J. N. Bahcall, M. H. Pinsonneault, S. Basu, Astrophys. J. 555, (2001) 990-1012

[20] M. Apollonio et al. [CHOOZ Collaboration], Phys. Lett. B 420, 397 (1998)

[arXiv:hep-ex/9711002]; M. Apollonio et al. [CHOOZ Collaboration], Phys. Lett. B 466, 415

(1999) [arXiv:hep-ex/9907037].

[21] G. L. Fogli, E. Lisi, A. Marrone and A. Palazzo, arXiv:hep-ph/0506083.

22

http://arXiv.org/abs/hep-ph/0312131
http://arXiv.org/abs/hep-ph/9903329
http://arXiv.org/abs/astro-ph/0412440
http://www.sns.ias.edu/~jnb/
http://arXiv.org/abs/nucl-ex/0003006
http://arXiv.org/abs/nucl-th/0009012
http://arXiv.org/abs/nucl-th/0201062
http://nuc003.psc.sc.edu~kubodera/NU-D-NSGK/
http://arXiv.org/abs/hep-ph/0404042
http://arXiv.org/abs/hep-ph/9807360
http://arXiv.org/abs/hep-ph/0102288
http://arXiv.org/abs/astro-ph/9502003
http://arXiv.org/abs/hep-ex/9711002
http://arXiv.org/abs/hep-ex/9907037
http://arXiv.org/abs/hep-ph/0506083


[22] S. Goswami and A. Y. Smirnov, Phys. Rev. D 72, 053011 (2005) [arXiv:hep-ph/0411359].

[23] F. Ardellier et al., arXiv:hep-ex/0405032.

[24] Y. Itow et al., arXiv:hep-ex/0106019.

For an updated version, see: http://neutrino.kek.jp/jhfnu/loi/loi.v2.030528.pdf

[25] D. Ayres et al. [Nova Collaboration], arXiv:hep-ex/0210005; arXiv:hep-ex/0503053.

[26] C. S. Lim, in Proceedings of BNL Neutrino Workshop, UPTon, New York, February 1987,

edited by M. J. Murtagh, BNL-52079, C87/02/05; T. K. Kuo and J. T. Pantaleone, Phys.

Rev. Lett. 57, 1805 (1986).

[27] G. Fogli and E. Lisi, New J. Phys. 6, 139 (2004); V. Barger, D. Marfatia and K. Whisnant,

Phys. Lett. B 617, 78 (2005) [arXiv:hep-ph/0501247].

[28] J. N. Bahcall, M. H. Pinsonneault, S. Basu and J. Christensen-Dalsgaard, Phys. Rev. Lett.

78, 171 (1997) [arXiv:astro-ph/9610250].

[29] H. Minakata, H. Nunokawa, W. J. C. Teves and R. Zukanovich Funchal, Phys. Rev. D 71,

013005 (2005) [arXiv:hep-ph/0407326]; A. Bandyopadhyay, S. Choubey, S. Goswami and

S. T. Petcov, Phys. Rev. D 72, 033013 (2005) [arXiv:hep-ph/0410283].

[30] Last reference in [5].

23

http://arXiv.org/abs/hep-ph/0411359
http://arXiv.org/abs/hep-ex/0405032
http://arXiv.org/abs/hep-ex/0106019
http://neutrino.kek.jp/jhfnu/loi/loi.v2.030528.pdf
http://arXiv.org/abs/hep-ex/0210005
http://arXiv.org/abs/hep-ex/0503053
http://arXiv.org/abs/hep-ph/0501247
http://arXiv.org/abs/astro-ph/9610250
http://arXiv.org/abs/hep-ph/0407326
http://arXiv.org/abs/hep-ph/0410283

	Introduction
	Two Neutrino Analysis:
	8B 2 Fraction
	7Be and pp neutrinos
	Two Neutrino Summary

	Three Neutrino Analysis
	8B 3 Neutrino Analysis
	7Be and pp 3 Neutrino Analysis

	Probing the solar interior by 8B neutrinos
	Summary and Conclusions
	Acknowledgments
	References

